"构造"搜索结果 1 条

数学史上有哪些问题是通过构造出一套新的理论才得以解决的?必须要构造新的理论才能解决这些问题吗?

投影集可测问题, 从波兰-俄罗斯学派到哥德尔之间是几乎无进展的真空期, 直到哥德尔和Cohen之后人们才发现, 这个数学问题所缺失的工具竟然来自于元数学(!) 称Borel集的投影为A集(analytic, 解析集), A集的补集称为CA集, CA集的投影称为PCA集, PCA集的补集称为CPCA集, 如此类推. 上世纪20-30年代波兰-俄罗斯学派兴起了研究这一类集合(统称为投影集)的潮流, 比如Luzin在莫斯科大学为此组织的讨论班参与人员就有大名鼎鼎的Sierpinski…